Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cochrane Database Syst Rev ; 3: CD015125, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-2230531

ABSTRACT

BACKGROUND: Inhaled corticosteroids are well established for the long-term treatment of inflammatory respiratory diseases such as asthma or chronic obstructive pulmonary disease. They have been investigated for the treatment of coronavirus disease 2019 (COVID-19). The anti-inflammatory action of inhaled corticosteroids might have the potential to reduce the risk of severe illness resulting from hyperinflammation in COVID-19. OBJECTIVES: To assess whether inhaled corticosteroids are effective and safe in the treatment of COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes CENTRAL, PubMed, Embase, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 7 October 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating inhaled corticosteroids for COVID-19, irrespective of disease severity, age, sex, or ethnicity. We included the following interventions: any type or dose of inhaled corticosteroids. We included the following comparison: inhaled corticosteroids plus standard care versus standard care (with or without placebo). We excluded studies examining nasal or topical steroids. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. For risk of bias assessment, we used the Cochrane RoB 2 tool. We rated the certainty of evidence using the GRADE approach for the outcomes of mortality, admission to hospital or death, symptom resolution, time to symptom resolution, serious adverse events, adverse events, and infections. MAIN RESULTS: Inhaled corticosteroids plus standard care versus standard care (with/without placebo) - People with a confirmed diagnosis of moderate-to-severe COVID-19 We found no studies that included people with a confirmed diagnosis of moderate-to-severe COVID-19. - People with a confirmed diagnosis of asymptomatic SARS-CoV-2 infection or mild COVID-19 We included three RCTs allocating 3607 participants, of whom 2490 had confirmed mild COVID-19. We analysed a subset of the total number of participants recruited to the studies (2171, 52% female) as some trials had a platform design where not all participants were allocated to treatment groups simultaneously. The included studies were community-based, recruiting people who were able to use inhaler devices to deliver steroids and relied on remote assessment and self-reporting of outcomes. Most people were older than 50 years and had co-morbidities such as hypertension, lung disease, or diabetes. The studies were conducted in high-income countries prior to wide-scale vaccination programmes. A total of 1057 participants were analysed in the inhaled corticosteroid arm (budesonide: 860 participants; ciclesonide: 197 participants), and 1075 participants in the control arm. No studies included people with asymptomatic SARS-CoV-2 infection. With respect to the following outcomes, inhaled corticosteroids compared to standard care: - may result in little to no difference in all-cause mortality (at up to day 30) (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.22 to 1.67; 2132 participants; low-certainty evidence). In absolute terms, this means that for every nine deaths per 1000 people not receiving inhaled corticosteroids, there were six deaths per 1000 people who did receive the intervention (95% CI 2 to 16 per 1000 people); - probably reduces admission to hospital or death (at up to 30 days) (RR 0.72, 95% CI 0.51 to 0.99; 2025 participants; moderate-certainty evidence); - probably increases resolution of all initial symptoms at day 14 (RR 1.19, 95% CI 1.09 to 1.30; 1986 participants; moderate-certainty evidence); - may reduce the duration to symptom resolution (at up to day 30) (by -4.00 days, 95% CI -6.22 to -1.78 less than control group rate of 12 days; 139 participants; low-certainty evidence); - the evidence is very uncertain about the effect on serious adverse events (during study period) (RR 0.51, 95% CI 0.09 to 2.76; 1586 participants; very low-certainty evidence); - may result in little to no difference in adverse events (at up to day 30) (RR 0.78, 95% CI 0.47 to 1.31; 400 participants; low-certainty evidence); - may result in little to no difference in infections (during study period) (RR 0.88, 95% CI 0.30 to 2.58; 400 participants; low-certainty evidence). As studies did not report outcomes for subgroups (e.g. age, ethnicity, sex), we did not perform subgroup analyses. AUTHORS' CONCLUSIONS: In people with confirmed COVID-19 and mild symptoms who are able to use inhaler devices, we found moderate-certainty evidence that inhaled corticosteroids probably reduce the combined endpoint of admission to hospital or death and increase the resolution of all initial symptoms at day 14. Low-certainty evidence suggests that corticosteroids make little to no difference in all-cause mortality up to day 30 and may decrease the duration to symptom resolution. We do not know whether inhaled corticosteroids increase or decrease serious adverse events due to heterogeneity in the way they were reported across the studies. There is low-certainty evidence that inhaled corticosteroids may decrease infections. The evidence we identified came from studies in high-income settings using budesonide and ciclesonide prior to vaccination roll-outs. We identified a lack of evidence concerning quality of life assessments, serious adverse events, and people with asymptomatic infection or with moderate-to-severe COVID-19. The 10 ongoing and four completed, unpublished RCTs that we identified in trial registries address similar settings and research questions as in the current body of evidence. We expect to incorporate the findings of these studies in future versions of this review. We monitor newly published results of RCTs on inhaled corticosteroids on a weekly basis and will update the review when the evidence or our certainty in the evidence changes.


Subject(s)
COVID-19 Drug Treatment , Adrenal Cortex Hormones , Cause of Death , Female , Humans , Male , Respiration, Artificial , SARS-CoV-2
2.
Cochrane Database Syst Rev ; 11: CD014963, 2022 11 17.
Article in English | MEDLINE | ID: covidwho-2117992

ABSTRACT

BACKGROUND: Systemic corticosteroids are used to treat people with COVID-19 because they counter hyper-inflammation. Existing evidence syntheses suggest a slight benefit on mortality. Nonetheless, size of effect, optimal therapy regimen, and selection of patients who are likely to benefit most are factors that remain to be evaluated. OBJECTIVES: To assess whether and at which doses systemic corticosteroids are effective and safe in the treatment of people with COVID-19, to explore equity-related aspects in subgroup analyses, and to keep up to date with the evolving evidence base using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes PubMed, Embase, CENTRAL, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 6 January 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated systemic corticosteroids for people with COVID-19. We included any type or dose of systemic corticosteroids and the following comparisons: systemic corticosteroids plus standard care versus standard care, different types, doses and timings (early versus late) of corticosteroids. We excluded corticosteroids in combination with other active substances versus standard care, topical or inhaled corticosteroids, and corticosteroids for long-COVID treatment. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess the risk of bias in included studies, we used the Cochrane 'Risk of bias' 2 tool for RCTs. We rated the certainty of the evidence using the GRADE approach for the following outcomes: all-cause mortality up to 30 and 120 days, discharged alive (clinical improvement), new need for invasive mechanical ventilation or death (clinical worsening), serious adverse events, adverse events, hospital-acquired infections, and invasive fungal infections. MAIN RESULTS: We included 16 RCTs in 9549 participants, of whom 8271 (87%) originated from high-income countries. A total of 4532 participants were randomised to corticosteroid arms and the majority received dexamethasone (n = 3766). These studies included participants mostly older than 50 years and male. We also identified 42 ongoing and 23 completed studies lacking published results or relevant information on the study design. Hospitalised individuals with a confirmed or suspected diagnosis of symptomatic COVID-19 Systemic corticosteroids plus standard care versus standard care plus/minus placebo We included 11 RCTs (8019 participants), one of which did not report any of our pre-specified outcomes and thus our analyses included outcome data from 10 studies. Systemic corticosteroids plus standard care compared to standard care probably reduce all-cause mortality (up to 30 days) slightly (risk ratio (RR) 0.90, 95% confidence interval (CI) 0.84 to 0.97; 7898 participants; estimated absolute effect: 274 deaths per 1000 people not receiving systemic corticosteroids compared to 246 deaths per 1000 people receiving the intervention (95% CI 230 to 265 per 1000 people); moderate-certainty evidence). The evidence is very uncertain about the effect on all-cause mortality (up to 120 days) (RR 0.74, 95% CI 0.23 to 2.34; 485 participants). The chance of clinical improvement (discharged alive at day 28) may slightly increase (RR 1.07, 95% CI 1.03 to 1.11; 6786 participants; low-certainty evidence) while the risk of clinical worsening (new need for invasive mechanical ventilation or death) may slightly decrease (RR 0.92, 95% CI 0.84 to 1.01; 5586 participants; low-certainty evidence). For serious adverse events (two RCTs, 678 participants), adverse events (three RCTs, 447 participants), hospital-acquired infections (four RCTs, 598 participants), and invasive fungal infections (one study, 64 participants), we did not perform any analyses beyond the presentation of descriptive statistics due to very low-certainty evidence (high risk of bias, heterogeneous definitions, and underreporting). Different types, dosages or timing of systemic corticosteroids We identified one RCT (86 participants) comparing methylprednisolone to dexamethasone, thus the evidence is very uncertain about the effect of methylprednisolone on all-cause mortality (up to 30 days) (RR 0.51, 95% CI 0.24 to 1.07; 86 participants). None of the other outcomes of interest were reported in this study. We included four RCTs (1383 participants) comparing high-dose dexamethasone (12 mg or higher) to low-dose dexamethasone (6 mg to 8 mg). High-dose dexamethasone compared to low-dose dexamethasone may reduce all-cause mortality (up to 30 days) (RR 0.87, 95% CI 0.73 to 1.04; 1269 participants; low-certainty evidence), but the evidence is very uncertain about the effect of high-dose dexamethasone on all-cause mortality (up to 120 days) (RR 0.93, 95% CI 0.79 to 1.08; 1383 participants) and it may have little or no impact on clinical improvement (discharged alive at 28 days) (RR 0.98, 95% CI 0.89 to 1.09; 200 participants; low-certainty evidence). Studies did not report data on clinical worsening (new need for invasive mechanical ventilation or death). For serious adverse events, adverse events, hospital-acquired infections, and invasive fungal infections, we did not perform analyses beyond the presentation of descriptive statistics due to very low-certainty evidence. We could not identify studies for comparisons of different timing and systemic corticosteroids versus other active substances. Equity-related subgroup analyses We conducted the following subgroup analyses to explore equity-related factors: sex, age (< 70 years; ≥ 70 years), ethnicity (Black, Asian or other versus White versus unknown) and place of residence (high-income versus low- and middle-income countries). Except for age and ethnicity, no evidence for differences could be identified. For all-cause mortality up to 30 days, participants younger than 70 years seemed to benefit from systemic corticosteroids in comparison to those aged 70 years and older. The few participants from a Black, Asian, or other minority ethnic group showed a larger estimated effect than the many White participants. Outpatients with asymptomatic or mild disease There are no studies published in populations with asymptomatic infection or mild disease. AUTHORS' CONCLUSIONS: Systemic corticosteroids probably slightly reduce all-cause mortality up to 30 days in people hospitalised because of symptomatic COVID-19, while the evidence is very uncertain about the effect on all-cause mortality up to 120 days. For younger people (under 70 years of age) there was a potential advantage, as well as for Black, Asian, or people of a minority ethnic group; further subgroup analyses showed no relevant effects. Evidence related to the most effective type, dose, or timing of systemic corticosteroids remains immature. Currently, there is no evidence on asymptomatic or mild disease (non-hospitalised participants). Due to the low to very low certainty of the current evidence, we cannot assess safety adequately to rule out harmful effects of the treatment, therefore there is an urgent need for good-quality safety data. Findings of equity-related subgroup analyses should be interpreted with caution because of their explorative nature, low precision, and missing data. We identified 42 ongoing and 23 completed studies lacking published results or relevant information on the study design, suggesting there may be possible changes of the effect estimates and certainty of the evidence in the future.


Subject(s)
COVID-19 Drug Treatment , Invasive Fungal Infections , Humans , Aged , Aged, 80 and over , Adrenal Cortex Hormones/adverse effects , Methylprednisolone , Dexamethasone/adverse effects , Randomized Controlled Trials as Topic , Post-Acute COVID-19 Syndrome
4.
Mayo Clin Proc Innov Qual Outcomes ; 6(3): 239-249, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1859967

ABSTRACT

Objective: To study the outcomes of noninvasive ventilation (NIV) administered through a tabletop device for coronavirus disease 2019 acute respiratory distress syndrome in the respiratory intermediate care unit (RIMCU) at a tertiary care hospital in India. Patients and Methods: We retrospectively studied a cohort of hospitalized patients deteriorating despite low-flow oxygen support who received protocolized management with positive airway pressure using a tabletop NIV device in the RIMCU as a step-up rescue therapy from July 30, 2020 to November 14, 2020. Treatment was commenced on the continuous positive airway pressure mode up to a pressure of 10 cm of H2O, and if required, inspiratory pressures were added using the bilevel positive air pressure mode. Success was defined as weaning from NIV and stepping down to the ward, and failure was defined as escalation to the intensive care unit, the need for intubation, or death. Results: In total, 246 patients were treated in the RIMCU during the study period. Of these, 168 received respiratory support via a tabletop NIV device as a step-up rescue therapy. Their mean age was 54 years, and 83% were men. Diabetes mellitus (78%) and hypertension (44%) were the commonest comorbidities. Treatment was successful with tabletop NIV in 77% (129/168) of the patients; of them, 41% (69/168) received treatment with continuous positive airway pressure alone and 36% (60/168) received additional increased inspiratory pressure via the bilevel positive air pressure mode. Conclusion: Respiratory support using the tabletop NIV device was an effective and economical treatment for coronavirus disease 2019 acute respiratory distress syndrome. Further studies are required to assess the appropriate time of initiation for maximal benefits and judicious utilization of resources.

SELECTION OF CITATIONS
SEARCH DETAIL